U.S. ENVIRONMENTAL PROTECTION AGENCY REGIONS II AND III TOTAL MAXIMUM DAILY LOADS FOR POLYCHLORINATED BIPHENYLS (PCBs) FOR ZONES 2 - 5 OF THE TIDAL DELAWARE RIVER prepared by the DELAWARE RIVER BASIN COMMISSION West Trenton, New Jersey SEPTEMBER 2003 ## **Authority** These TMDLs are established by the U.S. Environmental Protection Agency under the authority of Section 303(d) of the Clean Water Act, 33 U.S.C. § 1251 *et seq.*, and in accordance with EPA's implementing regulations, 40 C.F.R., § 130. #### Acknowledgements This report was prepared by the Delaware River Basin Commission staff: Carol R. Collier, Executive Director. Dr. Thomas J. Fikslin and Dr. Namsoo Suk were the principal authors of the report. Dr. Fikslin is the Head of the Commission's Modeling & Monitoring Branch. Dr. Suk is a Water Resources Engineer/Modeler in the Modeling & Monitoring Branch. Significant technical contributions were made by Gregory J. Cavallo, Dr. Daniel S. L. Liao, Dr. Ronald A. MacGillivray, and John R. Yagecic. Richard W. Greene is gratefully acknowledged for his efforts in summarizing fish tissue data for PCBs, and for providing Figures 2 and 3 of the report. Technical recommendations were provided by the Commission's Toxic Advisory Committee and its TMDL Policies and Procedures Subcommittee. Final decision and technical recommendations were provided by the Region II and Region III offices of the U.S. Environmental Protection Agency. The principal participants at EPA Region II included: Kevin Bricke, Deputy Director of the Division of Environmental Planning & Protection, and Susan Schulz. The principal participants at EPA Region III included: Joseph Piotrowski, Associate Director, Water Protection Division, Thomas Henry, TMDL Program Manager, Carol Ann Davis, Evelyn MacKnight, Chief of the DE/PA/WV Branch, Office of Watersheds, and Mary Kuo. Special acknowledgement is made to the following organizations for their support in development of the report and the studies leading up to it: Delaware Department of Natural Resources & Environmental Control New Jersey Department of Environmental Protection Pennsylvania Department of Environmental Protection U.S. Environmental Protection Agency, Region II U.S. Environmental Protection Agency, Region III Rutgers University Limno-Tech, Inc. #### **EXECUTIVE SUMMARY** ### **Background** The states of Delaware, New Jersey and Pennsylvania have listed the Delaware Estuary as impaired due to elevated levels of polychlorinated biphenyls (PCBs) in the tissue of fish caught in this portion of the Delaware River. The listing was based upon failure to attain the estuary's designated use – fishable waters. When water quality standards, including a numeric criterion and a designated use, are not attained despite the technology-based control of industrial and municipal wastewater (point sources), the Clean Water Act requires that the impaired water be identified on the state's Section 303(d) list of impaired waters and that a total maximum daily load (TMDL) be developed. A TMDL expresses the maximum amount of a pollutant that a water body can receive and still attain standards. Once the load is calculated, it is allocated to all sources in the watershed – point and nonpoint – which then must reduce loads to the allocated levels in order to achieve and maintain the applicable water quality standards. For management purposes, the Delaware Estuary has been designated by the Delaware River Basin Commission (also referred to in this report as the Commission) as that section of the main stem of the Delaware River and the tidal portions of the tributaries thereto, between the head of Delaware Bay (River Mile 48.2) and the head of the tide at Trenton, New Jersey (River Mile 133.4). The portion of the Delaware where the river meets the sea, the estuary is characterized by varying degrees of salinity and complex water movements affected by river flows, wind and ocean tides. A map of the estuary showing the four water quality management zones appears on the following page. In the late 1980s, the states of Delaware, New Jersey and Pennsylvania began issuing fish consumption advisories for portions of the Delaware Estuary due to elevated concentrations of PCBs measured in fish tissue. Today, the states' advisories cover the entire estuary and bay. The advisories range from a no-consumption recommendation for all species taken between the C&D Canal and the Delaware-Pennsylvania border to consumption of no more than one meal per month of striped bass or white perch in Zones 2 through 4. Why the need for such advisories? PCBs are classified as a probable human carcinogen by the U.S. Environmental Protection Agency (EPA). They also have been shown to have an adverse impact on human reproductive and immune systems and may act as an endocrine disruptor. PCBs are a class of synthetic compounds that were typically manufactured through the progressive chlorination of batches of biphenyl to achieve a target percentage of chlorine by weight. Individual PCB compounds called congeners can have up to 10 chlorine atoms attached to a basic biphenyl structure consisting of two connected rings of six carbon atoms each. There are 209 patterns in which chlorine atoms may be attached, resulting in 209 possible PCB compounds. These compounds can be grouped into "homologs" defined by the number of chlorine atoms attached to the carbon rings. Thus, for example, PCB compounds that contain five chlorine atoms comprise a homolog referred to as pentachlorobiphenyls or penta-PCBs. Due to their stable properties, PCBs were used in hundreds of industrial and commercial applications, including electrical, heat transfer, and hydraulic equipment; as plasticizers in paints, plastics and rubber products; in pigments, dyes and carbonless copy paper and many other applications. PCB laden oil is often associated with electrical transformers. More than 1.5 billion pounds of PCBs were manufactured in the United States before their manufacture and general use, with a few small exceptions, was banned by the EPA in the late 1970s. Existing uses in some electrical equipment continue to be allowed. PCBs are hydrophobic and thus tend to bind to organic particles in sediment and soils. Their chemical stability allows them to persist in the environment for years. PCBs accumulate in the tissue of fish and other wildlife, entering the organism through dermal absorption or ingestion. As a result, they may be present in fish and marine mammals at levels many times higher than in the surrounding water and at levels unsuitable for human consumption. The water quality standards that form the basis for the TMDLs are the current Delaware River Basin Commission water quality criteria for total PCBs for the protection of human health from carcinogenic effects. These criteria were identified as the TMDL targets by a letter dated April 16, 2003 from the Regional Administrators of EPA Regions II and III to the Executive Director of the Delaware River Basin Commission. The criteria are 44.4 picograms per liter in Zones 2 and 3, 44.8 picograms per liter in Zone 4 and the upper portion of Zone 5, and 7.9 picograms per liter in lower Zone 5. The more stringent criterion in the lower estuary reflects a higher fish consumption rate utilized by the Commission and the State of Delaware, based upon an evaluation of fish consumption there. A consequence of the inconsistency in criteria is that a critical location occurs at the point between upper and lower Zone 5 where the criteria drop sharply from 44.8 picograms per liter to 7.9 picograms per liter. Achieving the lower standard in a portion of Zone 5 will require much larger reductions in the upper zones than would otherwise be necessary. Significant reductions are required throughout the estuary in any case, as ambient concentrations of PCBs in the water body currently exceed the criteria by two to three orders of magnitude. PCBs have been dispersed throughout the environment by human activity. They enter the atmosphere as a gas, spill into soils and waterways, and lodge in sediments. They continue to be generated as a byproduct by some industrial processes. Thus, the sources of PCBs to the Delaware Estuary are multiple. They include loadings from the air, the main stem Delaware River above Trenton, tributaries to the Delaware both above and below Trenton, industrial and municipal point source discharges, combined sewer overflows, and storm water runoff, including runoff from seriously contaminated sites. For purposes of these TMDLs, point sources include all municipal and industrial discharges subject to regulation by the NPDES permit program, including combined sewer overflows and stormwater discharges. All other discharges are considered nonpoint sources. #### **Interagency and Interstate Cooperation** In the latter half of the 1990s, the three estuary states included the portions of Zones 2 through 5 of the Delaware River within their borders on their lists of impaired waters under Section 303(d) of the Clean Water Act, due to elevated levels of PCBs in estuary fish. This action required the states and EPA to agree upon a schedule for establishing TMDLs for PCBs. In order to provide for a single TMDL adoption process for the shared water body, one date for completion of the TMDLs – December 15, 2003 – was established. This is the date set for completion of the PCB TMDLs by a 1997 Consent Decree and Settlement Agreement in an action entitled *American Littoral Society and Sierra Club v. the United States Environmental Protection Agency et al.*, which established dates for adoption of TMDLs in Delaware. Because a unified legal process for issuance of the TMDLs could not be accomplished easily through independent state actions, at the request of the states, EPA agreed that it would issue the TMDLs for PCBs in the estuary on the states' behalf. In the spring of 2000, the states and EPA asked the Delaware River Basin Commission to take the lead in developing the technical basis for the estuary PCB TMDLs. In consultation with its Toxics Advisory Committee (TAC), comprised of representatives from the states, EPA Regions II and III, municipal and industrial dischargers, academia, agriculture, public health, environmental organizations and fish and wildlife interests, the Commission undertook to do so. In September of 2000, the Commission established a panel of scientists expert in the modeling of hydrophobic contaminants to advise it and the TAC on the development of the complex hydrodynamic and water quality model required to develop the TMDLs. The Commission also initiated an extensive program of scientific investigations and data collection efforts. In response to a recommendation of the expert panel, in May of 2002 the Commission engaged a consultant experienced in water quality modeling to work closely with Commission staff to develop the model. In consultation with the TAC, the Commission staff and the Delaware Estuary Program developed a strategy to address contamination of the Delaware Estuary by PCBs (the PCB Strategy). The PCB Strategy includes the following nine components: (1) determination of the water quality targets for PCBs; (2) characterization of PCB concentrations in the estuary ecosystem; (3) identification and quantification of all point and nonpoint sources and pathways of PCBs; (4) determination of the transport and fate of PCB loads to the estuary; (5) calculation of the TMDLs, including the wasteload and load allocations required for a TMDL;(6) development of an implementation plan to reduce PCBs entering the estuary; (7) initiation of an effort to increase public awareness of toxicity issues in the estuary; (8) long-term monitoring of PCB concentrations in air, water and sediments of the estuary; and (9) long-term monitoring of PCB concentrations in living resources of the estuary and impacts upon living resources of the estuary. In a cooperative effort, EPA, the Commission, the states, municipal and industrial dischargers and other stakeholders, have now completed the PCB Strategy components necessary for issuance of the TMDLs. The identification of water quality targets for the TMDLs and calculation of the TMDLs (components 1 and 5) are discussed below. An extensive program of scientific investigations and data collection efforts to characterize PCB sources, concentrations and pathways in the estuary ecosystem is ongoing (components 2, 3 and 8). To date, studies have been assembled or undertaken on fish tissue, ambient water quality, sediment, air deposition, air-water exchange, bioaccumulation pathways, tributary loading, point source discharges, and stormwater loadings. The transport and fate of PCBs in the estuary ecosystem (component 4) has been established through the development of a complex mathematical model, also discussed below. The Commission has established a TMDL Implementation Advisory Committee (IAC) to develop strategies over the next two years for reducing PCB loads to the estuary and achieving the TMDLs (component 6). An effort to educate the public about toxicity issues in the estuary (component 7) began with a series of public information sessions in February and March of 2001. In October of 2002, a coalition of municipal and industrial dischargers sponsored a science symposium, at which the various scientific investigators presented their findings to date. A meeting among regulators and stakeholders on the TMDLs and their regulatory implications was held in April, 2003 (see Appendix 1). Public information efforts continue, with three informational meetings about the proposed TMDLs scheduled on September 22, 24 and 25, 2003, a public hearing on the proposed TMDLs to be held on October 16, 2003, and ongoing education initiatives by the Delaware Estuary Program and the Partnership for the Delaware Estuary. # **Development of the TMDLs** The three-year schedule for development of the estuary TMDLs by December 15, 2003 resulted in a decision to develop the TMDLs using a staged approach. The Stage 1 and Stage 2 TMDLs will each comply fully with EPA requirements and guidance. The staged approach will provide for adaptive implementation through execution of load reduction strategies while additional monitoring and modeling efforts proceed. The approach recognizes that additional monitoring data and modeling results will be available following issuance of the Stage 1 TMDLs to enable a more refined analysis to form the basis of the Stage 2 TMDLs. The Stage 2 TMDLs are targeted for completion in 2005. EPA's regulations implementing Section 303(d) of the Clean Water Act provide that a TMDL must be expressed as the sum of the individual wasteload allocations (WLA) for point sources plus the load allocation (LA) for nonpoint sources plus a margin of safety (MOS). This definition may be expressed as the equation: TMDL = WLA + LA + MOS. A separate TMDL has been developed for each water quality management zone of the estuary. Each of the TMDLs must provide for achievement of the applicable water quality standards within the zone and also must ensure that water quality in downstream zones is adequately protected. In June of 2002, the expert panel recommended that for the TMDLs to be completed by December 15, 2003, the Commission should develop and calibrate a water quality model for only one of the PCB homologs and should extrapolate these TMDLs to approximate the TMDLs for total PCBs. This process became known as Stage 1 of an iterative approach to establishing the TMDLs for PCBs in the estuary. Since pentachlorobiphenyls were the dominant homolog in fish tissue monitored in the estuary, and since ambient data indicated that throughout the estuary this homolog represents approximately 25 percent of the total PCBs present, the pentachlorobiphenyls (penta-PCBs) were selected. Based on these recommendations and a review of the data, EPA adopted this approach. Thus, the proposed Stage 1 TMDLs, WLAs and LAs for total PCBs were extrapolated, using a factor of 4 to 1, from TMDLs and allocations developed for penta-PCBs. The Stage 2 TMDLs, WLAs and LAs, which are targeted for completion by the end of 2005, will be based on the summation of the PCB homolog groups, without the use of extrapolation. The Stage 2 TMDLs will be developed using all data collected and modeling performed through the time of their development. It is anticipated that the Stage 2 WLAs will be based upon a more sophisticated allocation methodology than the Stage 1 WLAs. When they are developed, the Stage 2 TMDLs will replace the Stage 1 TMDLs. The TMDLs were calculated using both a conservative chemical model and a penta-PCB water quality model run until equilibrium was observed. A modified version of the TOXI5 water quality model was used (DRBC 2003b and 2003c). Both models utilized outputs from a DYNHYD5 hydrodynamic model that was extended from the head of the Delaware Bay to the mouth of the bay (DRBC 2003a). The models cycled inputs from the period February 1, 2002 until January 31, 2003. This one-year period was considered to be representative of long-term hydrological conditions for two important reasons. First, during this period flows of the two main tributaries to the estuary – the main stem Delaware River and the Schuylkill River – reasonably represent the flows during the approximately 90- and 70-year periods of record, respectively, for the two tributaries (see Figures 5 and 6). Precipitation data during the one-year period also is in good agreement with the long-term precipitation record with respect to the number and percentage of days with and without precipitation. Upon the recommendation of the expert panel, in order to maintain hydrological and meteorological relationships between the various inputs to the model, effluent flows were based upon data for the same one-year period. rather than on design flows. The same approach was used for inputs such as air temperature, water temperature and wind speed. Penta-PCB TMDLs were calculated in a four step procedure. The procedure initially utilized the conservative chemical model to establish contribution factors for two of the major tributaries to the estuary – the Delaware River at Trenton and the Schuylkill River – and each of the four estuary zones. The contribution factor reflects the influence of the loading attributable to each tributary or zone on the PCB concentration at the critical location in Zone 5 where the water quality criterion for PCBs drops from 44.4 picograms per liter to 7.9 picograms per liter. If the criterion at this location is met, then the water quality criteria are met throughout the estuary. Once the contribution factors were established, the TMDLs were calculated over a one-year period to determine an annual median loading. The annual median was used in order to be consistent with the model simulations and the 70-year exposure for human health criteria. A description of the four steps follows: - 1. Calculate the contribution factor for each of the estuary zones and two of the tributary model boundaries to that critical location in Zone 5 where the criterion of 7.9 picograms per liter (approximately 2.0 picograms per liter of penta-PCBs) is controlling. - 2. Calculate the allowable loadings from each of these sources that will still ensure that the water quality target is met at the critical location. Iteratively determine the amount of assimilative capacity (in picograms per liter) provided by the sediments, and add this concentration to the penta-PCB water quality target. Recalculate the allowable loadings from each of the six sources using this revised water quality target. - 3. Utilize the water quality model for penta-PCBs with these allowable loadings to confirm that the sediment concentrations have reached pseudo- - steady state, and confirm that the penta-PCB water quality target is met in Zones 2 through 5. - 4. Estimate the gas phase concentrations that would be in equilibrium with the penta-PCB water concentrations when the water quality targets are met, include these in the water quality model, and then iteratively adjust the gas phase concentration of penta-PCBs in the air until the water quality target is reached. It is important to understand that for purposes of calculating the TMDLs, the model assumes that PCB loads from the ocean, the C&D Canal, the major tributaries and the air are at levels that ensure that the water quality standards are achieved, rather than at the actual levels, which in every case are higher. Thus, in developing the TMDLs, both the ocean boundary and the C&D Canal boundary were set to the water quality criterion of 7.9 picograms per liter, the criterion in lower Zone 5 where each of these water bodies meets the estuary. The actual concentration at the mouth of the Bay exceeds this value by one to two orders of magnitude, while the current concentration at the C&D Canal boundary exceeds this value by almost three orders of magnitude. Similarly, the Schuylkill and Delaware River boundary conditions were set to 9.68 picograms per liter and 10.72 picograms per liter respectively, although the actual concentrations in the two water bodies at the point where they enter the estuary are 1800 and 1600 picograms per liter respectively. The air concentration of PCBs also is considered by the model. When water quality standards are achieved, however, there will be no significant net exchange between dissolved PCBs in water and gas phase PCBs in the air. Because gas phase PCBs do not provide a load to the estuary when the water quality standards are met, they are not allocated any portion of the TMDLs. Actual air concentrations in the estuary region, however, currently exceed the levels required for equilibrium by two orders of magnitude. These conditions external to the model have significant implications for implementing the TMDLs which are discussed in greater detail in the next section of the Executive Summary. The TMDLs for penta-PCBs calculated with the four-step procedure were 64.34 milligrams per day for Zone 2, 4.46 milligrams per day for Zone 3, 14.18 milligrams per day for Zone 4, and 12.02 milligrams per day for Zone 5. The higher TMDLs in Zones 2 and 4 are the result of the assimilative capacity provided by the flows from the main stem Delaware River in Zone 2 and the Schuylkill River in Zone 4. Each of the zone TMDLs was then apportioned into three components: the WLA, LA and MOS. EPA has based these allocations upon recommendations of the Commission's TAC. The committee recommended that an explicit MOS of 5% be allocated in each estuary zone, and further recommended that for the Stage 1 TMDLs, the proportion of the TMDLs allocated to WLAs and LAs should be based upon the current loadings from the various PCB source categories to each of the zones during the one-year cycling period of February 1, 2002 to January 31, 2003. Stage 1 TMDLs were then calculated using the ratio of penta-PCBs to total PCBs observed in ambient water samples collected during five surveys that encompass the range of hydrological conditions typically observed in the estuary. Median penta- to total PCB ratios of 0.23, 0.25, 0.25 and 0.23 were observed in Zones 2 to 5, respectively. For the Stage 1 TMDLs, a fixed value of 0.25 was used for all zones to scale up the zone-specific TMDLs, WLAs, LAs and MOSs. The following table summarizes the TMDLs for each estuary zone for total PCBs as well as the allocations to WLAs, LAs and the MOSs. **Stage 1 TMDLs for Total PCBs** | Estuary Zone | TMDL | WLA | LA | MOS | |---------------------|---------|--------|--------|--------| | | mg/day | mg/day | mg/day | mg/day | | Zone 2 | 257.36* | 4.99 | 239.51 | 12.87 | | Zone 3 | 17.82 | 4.93 | 12.00 | 0.89 | | Zone 4 | 56.71 | 5.17 | 48.71 | 2.84 | | Zone 5 | 48.06 | 13.26 | 32.40 | 2.40 | | Sum | 379.96 | 28.34 | 332.62 | 19.00 | Note that because of the methods used to collect and analyze the PCB data, the LAs currently contain the loadings from municipal separate storm sewer systems (MS4s), which are regulated as NPDES point sources. EPA proposes that loadings from MS4s be identified and included as part of the WLAs when the Stage 1 TMDLs are issued in their final form. The portion of the TMDLs allocated to non-point sources is higher than the portion of the TMDLs allocated to point sources in all four estuary zones when the current loading proportions are used as the basis for allocating the zone TMDLs. This result is not unexpected. Nonpoint sources include, among other sources, contaminated sites, non-point source runoff, and the two main tributaries, which contribute greater loadings to the zones than the NPDES discharges (including stormwater discharges and combined sewer overflows) that comprise the point source contributions. The proportions vary between zones, with Zones 3 and 5 having the highest allocations to point sources (approximately 30%). ## Implementing Load Reductions to Achieve the TMDLs The following figure compares the current loadings for water quality management zones 2 through 5 and the Delaware and Schuylkill Rivers to the Stage 1 TMDL loadings: The chart illustrates that existing loadings are roughly two to three orders of magnitude higher than the TMDLs. Achieving the water quality standards for PCBs in the Delaware Estuary will require significant reductions from current loadings from both point and nonpoint sources. In addition to reducing PCB loads from sources discharging directly to the estuary, reductions from sources in the non-tidal portion of the river, local and regional air emissions, and sources contributing to elevated PCB concentrations in the Atlantic Ocean will be necessary to achieve and maintain the applicable PCB standards. This Stage 1 TMDL establishes individual wasteload allocations (WLAs) for 142 point sources that are deemed to be potential sources of penta-PCBs (see Appendix 2). As part of the PCB implementation strategy, the NPDES permitting authorities believe that it is appropriate for these discharges to receive non-numeric water quality-based effluent limits (WQBELs) when their NPDES permits are reissued or otherwise modified. The Delaware River Basin Commission may separately require such controls at other times. Requirements may include: (1) the use of Method 1668A, a highly sensitive analytical method capable of detecting very small amounts of PCBs, for any monitoring of influent and effluent to better quantify individual PCB congeners; (2) the development of a PCB minimization plan; and (3) implementation of appropriate PCB minimization measures identified through PCB minimization planning. The respective NPDES permitting authorities or the Commission will determine the discharge-specific effluent controls consistent with the WLA, and may consider the following factors: the relative loading of penta-PCBs, the type of discharge, the type of analytical method used to measure the 19 penta-PCB congeners, the number of the penta-PCB congeners that were detected, and the proportion of the zone WLA that is represented by the discharge loading. When Stage 2 TMDLs are issued, it is expected that all NPDES permits issued, reissued or modified will include numeric or nonnumeric requirements consistent with the Stage 2 WLAs for each zone. The implementation strategy for the development of NPDES permit effluent limits consistent with the WLAs is discussed at greater length in Appendix 3 of this report. Reducing point source discharges alone will not be sufficient to achieve the estuary water quality standards. Runoff from contaminated sites is a significant source of PCBs. For these TMDLs, EPA's Superfund programs and the states evaluated forty-nine contaminated sites within the estuary watershed (see Appendix 4). The combined loads from these sites are estimated to comprise 57.09% of the loading to Zone 3; 38.04% of the loading to Zone 4 and 46% of the loading to Zone 5 (see Table 7). Contaminated sites make up a much smaller proportion of the loading in Zone 2-0.42% – because of the lack of contaminated sites and the significant influence in this zone of the main stem Delaware River. Significant reductions will be required in point and nonpoint sources to the major tributaries. Currently, concentrations of PCBs in the Schuylkill and Delaware Rivers where they discharge to the estuary are approximately 1800 and 1600 picograms per liter, respectively. Even if all the TMDLs are achieved, the water quality criteria in the estuary will not be attained until the concentration in the Schuylkill is reduced to 9.68 picograms per liter and the concentration in the main stem Delaware River falls to 10.72 picograms per liter. Although the ocean boundary has a less significant influence on Zone 5 than does the main stem Delaware River, sources contributing to elevated PCB concentrations in the Atlantic Ocean also must be reduced. The concentration of PCBs in ocean water at the estuary boundary currently exceeds the water quality criterion for Delaware Bay by one to two orders of magnitude. Finally, air concentrations of PCBs in the region currently are two orders of magnitude above the concentration required to achieve equilibrium and halt contributions of PCBs from the air to the water. Air monitoring data collected at several sites in New Jersey, Delaware and Pennsylvania suggest that PCB air concentrations primarily result from local sources. Thus, source reductions must focus on PCBs in the local and regional airshed. These reductions cannot be achieved overnight. The Commission has created a TMDL Implementation Advisory Committee (IAC), with members from each of the estuary states, the major municipal dischargers and two of the smaller ones, industrial dischargers, and fishery, wildlife and environmental organizations. EPA Regions II and III also will participate, in an advisory role. The IAC will meet over a two-year period to develop creative and cost-effective strategies for achieving load reductions in the short term and attaining water quality standards in the longer term. Notably, some large dischargers already have undertaken studies to track down PCBs on a voluntary basis. However, due to the scope and complexity of the problem that has been defined through development of these TMDLs, achieving the estuary water quality standards for PCBs will take decades. #### **Additional Information** A notice about the proposed TMDLs for PCBs in the Delaware Estuary was published in the *Federal Register* and in each of the estuary states' registers on September 2, 2003. Additional notices were published in regional newspapers. The notices contain details about the comment period, informational meetings and public hearing for these TMDLs. Details about these events also are provided on the Commission's web site, at http://www.drbc.net. EPA will consider all data and information submitted through October 21, 2003 and will revise the TMDLs as appropriate before establishing them in final form. Comments should be submitted to: Ms. Lenka Berlin (3WP10), U.S. EPA Region III, 1650 Arch Street, Philadelphia PA 19103, or berlin.lenka@epa.gov.